Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(24): 13294-13301, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33749121

RESUMO

The generation of bioactive molecules from inactive precursors is a crucial step in the chemical evolution of life, however, mechanistic insights into this aspect of abiogenesis are scarce. Here, we investigate the protein-catalyzed formation of antivirals by the 3C-protease of enterovirus D68. The enzyme induces aldol condensations yielding inhibitors with antiviral activity in cells. Kinetic and thermodynamic analyses reveal that the bioactivity emerges from a dynamic reaction system including inhibitor formation, alkylation of the protein target by the inhibitors, and competitive addition of non-protein nucleophiles to the inhibitors. The most active antivirals are slowly reversible inhibitors with elongated target residence times. The study reveals first examples for the chemical evolution of bio-actives through protein-catalyzed, non-enzymatic C-C couplings. The discovered mechanism works under physiological conditions and might constitute a native process of drug development.


Assuntos
Proteases Virais 3C/antagonistas & inibidores , Antivirais/química , Enterovirus Humano D/enzimologia , Evolução Química , Proteases Virais 3C/metabolismo , Antivirais/metabolismo , Antivirais/farmacologia , Biocatálise , Carbono/química , Enterovirus Humano D/efeitos dos fármacos , Humanos , Cinética , Termodinâmica
2.
J Med Chem ; 61(3): 1218-1230, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29328649

RESUMO

Lead structure discovery mainly focuses on the identification of noncovalently binding ligands. Covalent linkage, however, is an essential binding mechanism for a multitude of successfully marketed drugs, although discovered by serendipity in most cases. We present a concept for the design of fragments covalently binding to proteases. Covalent linkage enables fragment binding unrelated to affinity to shallow protein binding sites and at the same time allows differentiated targeted hit verification and binding location verification through mass spectrometry. We describe a systematic and rational computational approach for the identification of covalently binding fragments from compound collections inhibiting enteroviral 3C protease, a target with high therapeutic potential. By implementing reactive groups potentially forming covalent bonds as a chemical feature in our 3D pharmacophore methodology, covalent binders were discovered by high-throughput virtual screening. We present careful experimental validation of the virtual hits using enzymatic assays and mass spectrometry unraveling a novel, previously unknown irreversible inhibition of the 3C protease by phenylthiomethyl ketone-based fragments. Subsequent synthetic optimization through fragment growing and reactivity analysis against catalytic and noncatalytic cysteines revealed specific irreversible 3C protease inhibition.


Assuntos
Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Enterovirus/enzimologia , Cetonas/química , Cetonas/farmacologia , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , Proteases Virais 3C , Domínio Catalítico , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/metabolismo , Desenho de Fármacos , Ensaios de Triagem em Larga Escala , Cetonas/metabolismo , Modelos Moleculares , Relação Estrutura-Atividade , Especificidade por Substrato , Proteínas Virais/química
3.
Angew Chem Int Ed Engl ; 56(26): 7358-7378, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28117936

RESUMO

Protein-templated fragment ligation is a novel concept to support drug discovery and can help to improve the efficacy of protein ligands. Protein-templated fragment ligations are chemical reactions between small molecules ("fragments") utilizing a protein's surface as a reaction vessel to catalyze the formation of a protein ligand with increased binding affinity. The approach exploits the molecular recognition of reactive small-molecule fragments by proteins both for ligand assembly and for the identification of bioactive fragment combinations. In this way, chemical synthesis and bioassay are integrated in one single step. This Review discusses the biophysical basis of reversible and irreversible fragment ligations and gives an overview of the available methods to detect protein-templated ligation products. The chemical scope and recent applications as well as future potential of the concept in drug discovery are reviewed.


Assuntos
Descoberta de Drogas/métodos , Proteínas/química , Fenômenos Biofísicos , Cristalografia por Raios X , Descoberta de Drogas/tendências , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Ligação Proteica
5.
Nat Commun ; 7: 12761, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27677239

RESUMO

Small-molecule fragments binding to biomacromolecules can be starting points for the development of drugs, but are often difficult to detect due to low affinities. Here we present a strategy that identifies protein-binding fragments through their potential to induce the target-guided formation of covalently bound, irreversible enzyme inhibitors. A protein-binding nucleophile reacts reversibly with a bis-electrophilic warhead, thereby positioning the second electrophile in close proximity of the active site of a viral protease, resulting in the covalent de-activation of the enzyme. The concept is implemented for Coxsackie virus B3 3C protease, a pharmacological target against enteroviral infections. Using an aldehyde-epoxide as bis-electrophile, active fragment combinations are validated through measuring the protein inactivation rate and by detecting covalent protein modification in mass spectrometry. The structure of one enzyme-inhibitor complex is determined by X-ray crystallography. The presented warhead activation assay provides potent non-peptidic, broad-spectrum inhibitors of enteroviral proteases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...